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A Research Proposal to the CLIVAR-Pacific Component of NOAA's Climate and Global Change Program

              Subseasonal Predictability of the Coupled Tropical Indo-Pacific

Abstract

There is growing recognition of tropical biases in climate models that have persisted despite

many years of coordinated model development in the climate research community. One possible

cause of these errors is the misrepresentation of shorter-term tropical variability in the models. In

particular, there has been much recent research into the MJO-ENSO connection. The primary goal

of our proposed project is to construct a linear inverse model (LIM) of the coupled tropical

atmosphere-ocean system from past observations that is useful for simulating, predicting, and

diagnosing tropical anomalies on subseasonal scales. We have recently presented (in Winkler et al

2001, Newman et al 2003) an atmospheric LIM of weekly variations of extratropical

streamfunction and tropical diabatic heating that is excellent at representing the simultaneous and

time-lag statistics of these quantities. Penland and collaborators (e.g. Penland and Sardeshmukh

1995b) have already demonstrated the usefulness of the LIM technique for diagnosing and

predicting seasonal tropical SST variations. The forecast skill of these atmospheric and oceanic

LIMs in the Tropics is competitive with that of much more comprehensive models, and suggests

that coupling them will improve upon both. We will construct such a coupled LIM with its state

vector representing the dominant EOFs of weekly anomalies of the tropical circulation at five

tropospheric levels, the dominant EOFs of the column-averaged and column-varying heat sources

Q1 and moisture sinks Q2, and the dominant EOFs of SSTs in the Indo-Pacific domain.

We will then use this coupled LIM to diagnose the variability and predictability of the coupled

tropical system on weekly and longer time scales. We are particularly interested in determining

(1) the average predictability as well as the case-to-variations of predictability of each model

variable at each grid point, (2) the 4-D structures of the coupled circulation-heating-SST

eigenmodes of the system and their relation to structures deduced from tropical wave theory, and

(3) the form and impact of the air-sea coupling on subseasonal tropical variability, including but

not restricted to the MJO. We will also repeat the entire analysis on existing coupled GCM output

from the NCAR CSM2 and CMIP2+ models, to assess to what extent the relationships among the

atmospheric and oceanic LIM variables are correctly represented in comprehensive coupled

models.
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1. Motivation and Background

Despite many years of coordinated model development in the climate research community,

some climate model biases in the Tropics have proved remarkably difficult to eradicate. These

include a mean cold SST bias, a too equatorially confined structure of ENSO variability, and sub-

stantially erroneous frequency power spectra. Figure 1 illustrates the problem for 8 global cou-

pled models participating in the Coupled Model Intercomparison Project (Meehl et al. 2000)

(CMIP2+). Compared to observations, the model spectra of the dominant EOF of tropical Pacific

SST variability show very different total power, and the time scales in which it is concentrated.

They also appear more sharply peaked than the observed spectrum, which, although estimated

from a shorter record, is nonetheless smoother and approximates the spectrum of red noise with

an 8-month correlation scale. Such a spectrum is suggestive of a damped linear system with

broadband stochastic forcing, i.e forcing with a much shorter correlation scale. And indeed one

possible suggested cause of the climate model errors has been the misrepresentation of shorter-

term tropical variability in the models (e.g., Fedorov et al. 2003). In particular, there has been

much recent research into the MJO-ENSO connection. The primary goal of our proposed project

is to construct a model of the coupled tropical atmosphere-ocean system that is useful for simulat-

ing, predicting, and diagnosing tropical anomalies on subseasonal scales in observations and in

climate model simulations. A correct representation of important coherent (and therefore, in prin-

ciple, predictable) subseasonal tropical phenomena such as the MJO, whose simulation and pre-

diction remain problematic in most weather and climate models, is of course also important in its

own right.

To avoid repeating the errors of many previous “forward” modeling attempts, our coupled

model will be a linear inverse model (LIM), derived from the observed statistics of weekly tropi-

cal variations over the last 50 years. Linear inverse modeling may be broadly defined as extracting

the dynamical properties of a system from its observed statistics, as described for example in Pen-

land and Sardeshmukh (1995b) (see also Penland 1989, 1996; Penland and Ghil 1993; Delsole

and Hou 1999, Winkler et al 2001, Newman et al 2003). The procedure and its strengths and pit-

falls are discussed at length in these papers, so we will only provide its bare essentials here for

convenience of later discussion. In any multidimensional statistically stationary system with com-

ponents xi, one may define a timelag covariance matrix C(τ) with elements Cij = < xi(t+τ) xj(t) >,

where angle brackets denote a long term average. In linear inverse modeling, one assumes that the
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system satisfies C(τ) = G(τ)C(0), where importantly G(τ) = exp(Bτ) and B is a constant matrix,

and uses this relationship to estimate B given observational estimates of C(0) and C(τ0) at some

lag τ0. In such a system any two states separated by a time interval τ are related as x(t+τ) =

G(τ)x(t) + ε , where ε is a random error vector with covariance E(τ) = C(0) – G(τ)C(0)GT(τ).

Note that the system need not have Gaussian statistics for these relations to hold. However, for its

statistics to be stationary, B must be dissipative, i.e its eigenvalues must have negative real parts.

In a forecasting context, G(τ)x(t) represents the “best” forecast (in a least squares sense) of x(t+τ)

given x(t), and E(τ) represents the expected covariance of its error. Note that for large lead times

τ, G(τ)x(t) ⇒ 0 and E(τ)⇒ C(0). Note also that unlike multiple linear regression, determination

of G at one lag identically gives G at all other lags.

We have constructed LIMs from just atmospheric data (ALIM; Winkler et al 2001, Newman

et al 2003) and from just oceanic data (OLIM; Penland and Sardeshmukh (1995b), Penland and

Matrosova (1994, 1998)). The ALIMs have been constructed separately for winter and summer

seasons, in a reduced EOF space representing weekly averaged streamfunction anomalies at 750

hPa and 250 hPa and weekly-averaged column-integrated tropospheric diabatic heating anoma-

lies. During winter, 37 EOFs were retained, whereas 50 EOFs were retained for summer; in both

cases this truncation retains more than 90% (70%) of the variability in regions of large stream-

function (heating) variability. Similarly, the OLIM shown below is constructed from yearround

three-month running mean SST anomalies, determined from the HADIST dataset for the years

1950-2002; 30 EOFs (which explain greater than 90% of the variance) have been retained. [This

OLIM differs only in some quantitative details from the OLIM presented by Penland and collabo-

rators, who used a different dataset, time period, and EOF truncation.]

Particularly in the Tropics, both models are competitive with fully nonlinear GCMs, which

have nominally O(106) degrees of freedom. The OLIM is used to make realtime SST forecasts,

and is included in the Experimental Long-lead Forecast Bulletin. For the ALIM, Figure 2 shows

that for week 2 tropical diabatic heating forecasts in both winter and summer, the skill of the

weekly ALIM compares well with the version of the MRF used operationally in 1998 at NCEP

(MRF98). Moreover, MRF98 forecasts of tropical heating are actually considerably worse than

those of the ALIM over the west Pacific, an important region of air-sea coupling on subseasonal

time scales, where the MRF98 has poor skill as early as week 1 (not shown) and no skill by week

2.
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One benefit of LIM is that predictability can be assessed directly from it. For example, one

can show quite generally, for any forecast variable at any grid point, and regardless of whether or

not the distribution of that variable is Gaussian, that for a perfect model the expected correlation

of ensemble-mean forecasts with observations is given by = S2/[1+ S2], where S = s/σf is

the forecast signal to noise ratio (Sardeshmukh et al. 2000). For the LIM, both s and σf can be

determined a priori for every initial condition (Newman et al. 2003); the resulting S can be used to

estimate the theoretical (that is, perfect model) skill of the LIM.

Figure 3 shows that the actual ALIM skill is comparable to the theoretical skill, though still

somewhat smaller. In the ALIM, the predictable variations of signal are associated with variations

of the initial state projection on the growing singular vectors of the ALIM’s propagator, which

have relatively large amplitude in the Tropics. At times of strong projection on such structures, the

signal to noise ratio is relatively high, and the Northern Hemispheric circulation is not only poten-

tially but also actually more predictable than at other times (Newman et al. 2003). But there is

clearly much dynamical information that is missing in our simple variable set. In particular, we

have included no detail of the vertical structure of the diabatic heating, despite its potential impor-

tance to the propagation of the tropical circulation anomalies. Moreover, we have not included

moisture flux anomalies which can precede convection. It seems clear that an extension of the

ALIM to additional levels, including the vertical structure of both Q1 and Q2, is a necessary next

step.

Similarly, actual OLIM skill is similar to but lower than the theoretical skill (Figure 4). Inter-

estingly, although the skill of forecasting the broad dominant pattern of tropical central/east

Pacific SST (i.e., the leading EOF) is high, along a narrow equatorial belt in the east Pacific both

actual and potential skill are reduced. This is a result of the large signal in this region being over-

whelmed by even larger noise on the seasonal time scale. A key unanswered question is whether

this is truly noise, or whether it represents either missing variables (including atmospheric) or

whether instead a higher fraction of predictable variability in fact exists on the weekly timescale.

For example, Figure 5 shows that there is considerable variance of weekly SSTs in this region

and also in the IndoPacific warm pool area. Thus, some of the seasonal variance in these regions

may be a residual of weekly variability. In a seasonal OLIM, possible weekly predictable variabil-

ity is not resolvable, but it could be in a weekly OLIM, especially when coupled to the atmo-

sphere.

ρ∞ ρ∞
2
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This point is emphasized in Figure 6, which shows the two growing singular vectors of the

seasonal OLIM for a lag of τ=8 months. It is interesting how their initial structures are only mildly

different but their final structures are radically different. This implies that minor differences in the

initial states in the western Pacific can give rise to radically different ENSO evolution. To improve

our long-lead ENSO forecasts, then, we must improve our representation and prediction of these

initial anomalies in the western Pacific. In the seasonal OLIM formalism we would say we need to

“get the stochastic forcing right” in the warm pool area. In the weekly coupled LIM we would say

we need to “get the weekly variability and weekly predictions right”.

Although it would be useful to improve the ALIM and OLIM independently of each other as

described above, it is clear from the above that a more comprehensive model involves coupling

the two together. From a forecast standpoint alone, coupling the ALIM and OLIM together should

improve the skill of each. For example, equatorial heating anomalies at the dateline should evolve

differently depending upon the SST conditions. If the impact of air/sea interactions upon MJO

propagation is significant, then a coupled LIM (CLIM) should have a better MJO forecast than an

ALIM. Conversely, some of the climate noise in the seasonal OLIM may be due to atmospheric

variability which is predictable on the weekly timescale.

But perhaps as useful is the insight to be gained from a coupled LIM into the real-world cou-

pling between the atmosphere and ocean, since the structure of LIM allow us to quantify these

feedbacks. For example, Winkler et al. (2001) defined their state vector x as

, (1)

where ψ was anomalous streamfunction and H was anomalous tropical diabatic heating. The lin-

ear inverse model could then be expressed as

(2)

where and were the white noise forcing of ψ and H, respectively. By including H explic-

itly in x, it became possible to diagnose how tropical heating impacts streamfunction variability

(Winkler et al. 2001) and predictability (Newman et al. 2003) through BψH, and vice versa

x ψ
H

≡
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through BHψ. We expect a similar analysis on the extended atmosphere-ocean state vector will

prove equally enlightening.

To carry out this analysis, it is critical to have a complete dataset of not only SSTs and atmo-

spheric circulation, but also the more difficult to determine quantities of the apparent diabatic heat

source Q1 and moisture sink Q2. It is well known that notable differences which exist in the diver-

gent wind field between reanalyses in the Tropics (e.g., Newman et al. 2000) can negatively

impact estimates of both heat and moisture budgets. That the error in the analyzed wind fields is

predominantly in the divergent component of the wind, and not in the rotational component, is

consistent with the fact that the large-scale vorticity analyses produced at different data centers

are in much better agreement than the corresponding divergence analyses. One way to correct the

analyzed divergence is by constraining the winds to minimize imbalances in both the mass and

vorticity budgets, thus enforcing dynamical consistency upon the divergent circulation. We have

applied this approach, known as the “chi-problem” (Sardeshmukh 1993; Sardeshmukh et al 1999)

to the four-times daily NCEP-NCAR reanalysis for the years 1949-2003. The resulting altered

wind fields have then been used to compute estimates of the four-dimensional Q1 and Q2 fields.

Figure 7 shows that in the TOGA-COARE winter in the IFA region, the so called “chi-corrected”

Q1 and Q2 profiles are in better agreement with observations than is the NCEP reanalysis, with a

nearly identical estimation of the deep convective heating profile Q1 and low-level Q2. Further

analysis by Lin et al. (2003) shows that the chi-corrected Q1 field captures the enhanced “top-

heaviness” of the vertical profile of heating during the mature phase of the MJO. Thus, we expect

that the inclusion of these Q1 and Q2 datasets in the coupled LIM should help in simulating and

predicting MJO variability.

2. Research Tasks

The results shown in Figures 1–7 suggest that an empirically-derived dynamical model of the

coupled atmosphere-ocean system in the Tropics may prove to be as, if not more, useful than cur-

rent coupled GCMs in diagnosing subseasonal variability and predictability. Note, of course, that

LIM is not meant nor intended as a replacement for coupled GCMs; as an empirical model, it does

not allow us to experiment with the physics of the climate system, nor does it help us understand

what would happen in the presence of external forcing (such as anthropogenic change) on the sys-
6



tem. However, since LIM provides both the dynamical operator B and an estimate of the noise

forcing, it is an extremely powerful empirical technique. As briefly discussed above, this allows

not only a forecast model (which provides a hard test for the success or failure of the LIM tech-

nique), but more important a determination of relevant dynamical structures, the quantification of

different feedback processes to these structures, and the differing levels of predictability associ-

ated with these structures. That is, the LIM shows us the form of the dynamical system that must

be simulated correctly by coupled GCMs. LIM thus provides an important baseline for diagnosing

error within coupled GCMs, as well as evaluating the relative importance of these errors. For

example, which are the most important sources of error (and how do they interact): errors of

atmospheric dynamics within the AGCM including those which act to provide the atmospheric

noise forcing of the ocean, the ocean dynamics, and/or the coupling between the AGCM and

OGCM?

Our basic research goal thus broadly consists of two parts: development of the CLIM and then

its application to diagnosis of tropical variability and predictability. To fully develop the CLIM we

must do the following:

1. Currently we have ALIMs only for winter and summer. We will construct coupled LIMs for

the entire year, and extend the data coverage to over 50 years.

2. At present the ALIM state vector consists of 250 and 750 mb extratropical streamfunction and

column-averaged tropical diabatic heating. To modify the model for the tropical problem, we

will consider tropical streamfunction and velocity potential anomalies at 200, 400, 600, 850

and 1000 mb and also the tropical Q1 and Q2 anomalies in the upper and lower troposphere

instead of just the tropospheric column average of Q1 used previously. The training and verifi-

cation datasets of Q1 and Q2 will be derived from dynamically consistent wind convergence

fields (using the “chi-correction” technique developed at CDC) to compute the vertical veloc-

ity needed for Q1 and the moisture convergence needed for Q2. Note that column-integrated

Q2 anomalies are equivalent to P-E (precipitation minus evaporation) anomalies.

3. We will additionally extend the state vector to include tropical SSTs. Weekly SST data is only

available for the 1981-current period from NCEP (Reynolds et al 2002). Our preliminary anal-

ysis shows that this dataset is sufficient to determine a SST-only LIM. Thus, we will construct

a CLIM for the 1981-current period. Clearly, however, more data is useful in increasing the
7



number of degrees of freedom (and hence the resolution) of the LIM. The second singular

vector of the OLIM (Fig. 6) in particular is not well captured at lower resolution. Thus, we

will additionally construct “weekly” SST datasets for the full 1949-2003 period in two ways:

a)First, we will interpolate the monthly SST data onto the weekly time interval, simi-

lar to what is done for AMIP calculations, and use this dataset to construct a CLIM.

b)Then, for the 1981-2003 period we will regress the weekly NCEP SST against both

weekly averaged atmospheric variables and the weekly interpolated SST determined

in (a). This regression will be used to “correct” (more realistically, to improve) the

weekly interpolated SST for the entire period; the resulting weekly SST dataset will

again be used to construct a CLIM.

4. An additional LIM for the 1980-2002 period will be constructed with subsurface ocean infor-

mation as well, using the NCEP Pacific Ocean Analysis Dataset. Note that adding subsurface

variables has not been shown to improve the forecast skill of LIM of SSTs, most likely

because the SST inverse model already implicitly includes the effects of all subsurface vari-

ables linearly related to the SSTs. This is of course not the same as saying that SST variability

is due only to the physics of the ocean surface; the state of the ocean at depth is crucial, so

including subsurface information in the LIM will allow diagnosis of the impact of these vari-

ables upon the variability and predictability of SSTs.

5. Finally, we will include some measures of coupling between the atmosphere and surface, such

as surface moisture fluxes and wind stress anomalies. The former will be particularly useful

for including the effects of land in the tropical belt. Our full state vector will thus represent the

dominant EOFs of the weekly-averaged horizontal rotational and divergent circulation at five

levels, the dominant EOFs of the column-integrated and column-varying heat sources and

moisture sinks, the dominant EOFs of SSTs in the global tropical belt, and the dominant EOFs

of surface fluxes in the global tropical belt. Given the limited data available, an important

component of this analysis will be determining the best combination of retained variance for

the EOF representation of each variable, and the robustness of the results with respect to

changes in these truncations.
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6. Error sensitivity analysis of the CLIMs (Penland and Sardeshmukh 1995a; Penland and

Matrosova 2001) will be conducted, with respect to both data error and sampling limitations.

7. When the CLIM has been adequately tested and verified, real-time tropical forecasts of SST,

P-E, and atmospheric diabatic and circulation anomalies on this higher subseasonal resolution

will be released on the CDC website (current seasonal forecasts of SST alone are at http://

www.cdc.noaa.gov/forecasts/IndoPacific.frcst.html).

This new coupled LIM will then be used to diagnose variability and predictability of the cou-

pled tropical Indo-Pacific system.

1. The coupled LIM will allow an empirical determination of the form and impact of local air/

sea coupling on the evolution of tropical intraseasonal atmospheric variability. ENSO’s impact

upon the variability of Q1 and Q2 subseasonal anomalies in general and upon MJO variability

in particular will also be determined in this manner. This will also result in an empirical deter-

mination of the impact of air/sea coupling on the evolution of, and hence CLIM forecasts of,

the MJO. The OLIM well captures the warming (cooling) of both the tropical Atlantic and

Indian Oceans that follows the development of warming (cooling) in the eastern tropical

Pacific (e.g., Penland 1996; Penland and Matrosova 1998), but by including atmospheric vari-

ables the CLIM will also provide understanding of the effect of changes in the Walker circula-

tion upon the redistribution of heat in the Tropics.

2. Conversely, including weekly tropical SST anomalies explicitly in our LIM may not only

improve subseasonal atmospheric forecast skill but also help in diagnosing and predicting the

weekly tropical SST variations themselves more accurately.

3. We will estimate an average forecast signal-to-noise ratio for each model variable at each trop-

ical grid point, and use it to estimate the potential predictability of weekly variations of that

variable at that point. As in our previous predictability studies, we will also be able to quantify

the case-to-case variations of predictability resulting from variations of the initial-state projec-

tion on the system’s singular vectors. We will also combine these results with (1) above to

determine how ENSO impacts predictability of the MJO and other Q1 and Q2 subseasonal

anomalies.

4. We will determine the four-dimensional structure of such tropical modes of variability as the
9



MJO, Kelvin waves, equatorial Rossby (ER) waves, and mixed Rossby-gravity waves from

our 54-year dataset of dynamically consistent winds, Q1, and Q2 fields, using the filter

employed by Wheeler and Kiladis (1999). This will allow explicit comparison of these phe-

nomena to either the deterministic LIM modes or (in the case of the faster components) to the

structured stochastic forcing of those modes. Understanding how these phenomena impact the

dynamical and noise structures is also important for the predictability analysis (e.g., Tippett

and Chang 2003).

5. In conjunction with the statistics of the stochastic forcing determined from the Fluctuation-

Dissipation Relation, the LIM will be used to generate a 1000-yr synthetic dataset of tropical

atmospheric and oceanic variability using the method described in Penland and Matrosova

(1994). Note that even though the LIM is generated from a short lag on the order of a few

weeks, it nevertheless encompasses all timescales and dynamics operating on longer (poten-

tially much longer) timescales. Thus, the power spectrum of different SST modes will be

determined from this synthetic dataset. This will be compared to the observed spectrum (e.g.,

Fig. 1) to see if any observed variability (such as on decadal timescales) rises above this mul-

tivariate red noise background, or if such variability can be explained as resulting from spec-

tral peaks inherent to the LIM. This will also allow an estimate of predictability on

interdecadal timescales.

6. Note also that the SSTs from this dataset can be used to force AMIP-type AGCM experi-

ments, and also the full dataset can be used to force AGCMs in relaxation experiments, to

examine the extratropical response to realistic tropical forcing on not only subseasonal but

also on interannual and even decadal time scales. The latter experiments in particular can be

useful, since AGCMs commonly produce errors in the tropical precipitation (and conse-

quently diabatic heating) response to tropical SST anomalies which complicates analysis of

the tropical-extratropical relationship (e.g., Spencer and Slingo 2003).

Finally, the entire above analysis will be repeated on existing coupled GCM output from the

NCAR CSM2 and CMIP2+ models to assess to what extent the relationships between the atmo-

spheric and oceanic variables encapsulated in the LIM are correctly represented in comprehensive

coupled models. The coupled GCMs of CMIP2+ all have daily output available (as opposed to

earlier version of CMIP; see http://www-pcmdi.llnl.gov/cmip/cmip2plusann.html). We will
10



directly compare the linear operators representing the dynamics of each of these models to the

observed linear operator. We will determine how well each model represents the atmospheric,

oceanic, and coupled portions of these operators, using the method described in section 1 above.

We will also compare the statistics of the noise in each of these models to the statistics of the

noise determined from observations. For each coupled GCM, we will compare the power spectra

of the model output to the power spectra predicted by the CLIM of that model output, to again

determine the amount of decadal variability that is above the multivariate red noise baseline of

that coupled model. Finally, we will attempt to construct CLIMs from the output of the doubled-

CO2 experiments also available through CMIP2+. Problems with nonstationarity may make these

calculations unsuccessful, but otherwise we can obtain an estimate of how anthropogenic change

may impact the dynamics of the coupled system within the Tropics.

3. Timeline

We expect to follow the following approximate timeline over the three years covered by this

proposal:

Year 1:Construct CLIMs, including robustness and significance tests of CLIMs. Conduct

error sensitivity analysis.

Begin Wheeler/Kiladis analysis upon chi-corrected Q1, Q2, and circulation variables.

Year 2: Write up results of CLIM, including forecast skill and dominant dynamical structures.

Complete Wheeler/Kiladis analysis upon chi-corrected Q1, Q2, and circulation variables.

Write up results of Wheeler/Kiladis analysis upon chi-corrected Q1, Q2, and circulation vari-

ables.

Construct CLIMs from coupled GCM output.

Construct 1000-yr synthetic dataset of coupled tropical ocean/atmosphere.

Predictability analysis of CLIM.

Year 3: Analyze noise structures of CLIM, and relationship to faster tropical heating/circula-

tion modes.
11



Write up noise and predictability analysis.

Construct CLIMs including subsurface data, for both observations and coupled GCMs.

Write up results of CLIM from coupled GCMs.

Write up results of CLIMs with subsurface data.

4. Readiness and budget justification

The P.I. and Co-P.I.s are well suited to undertake the proposed research, as is probably evident

from their several publications on these topics in the last decade. The proposed project represents

a natural extension of our previous work; as noted, the relevant component (uncoupled) LIM

models are already built. All datasets which we plan to analyze, including the entire NCEP reanal-

yses dataset, the chi-corrected heating datatset, and the NCEP Pacific Ocean Analysis Dataset, are

available in easily readable form here at CDC. The CMIP2+ dataset (used to make Fig. 1) is avail-

able under Diagnostic Subprojects (one approved (#44), a second currently pending) submitted to

the CMIP panel.

The P.I. will assume overall responsibility for the completion of these tasks. The PI and co-PIs

will all be actively involved in all parts of the project. A Professional Research Assistant, who will

assist in all aspects of the project, will devote most of his/her time helping to generate and main-

tain the large datasets connected with the project, and doing the extensive tests of robustness and

forecast skill required in the constructionof the LIM.

Drs. Newman, Sardeshmukh, and Penland request no direct support. Their salaries are cov-

ered under long-term funding to CDC through the Climate Dynamics and Experimental Predic-

tion (CDEP) program of NOAA/OGP. Dr. Newman will devote approximately 2.5 months of his

time, per year, to this project. Dr. Sardeshmukh will devote approximately 1.5 months of his time,

per year, to this project. Dr. Penland will devote approximately 1 month of her time, per year, to

this project. We are, however, requesting 7.5 months salary support for the project research assis-

tant. One month support for a CDC-CIRES Computer System Support Personnel is requested to

provide the technical support needed for essential computer hardware and software systems.

Travel funds are requested to provide support to present our results at professional meetings.

Materials and supplies will cover basic office supplies plus small software and storage media pur-

chases.
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Figure 1: Power spectra of the leading principal component (PC) of Tropical Pacific SST from

observations (HADIST dataset) and eight different coupled GCMs from CMIP 2+.
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Figure 2.  Comparison of local anomaly correlation of column-integrated tropical diabatic heat-

ing week 2 forecasts for the LIM and the MRF98, for the years 1979-2000. The MRF forecasts

come from the 22-year “Reforecast dataset” available at http://www.cdc.noaa.gov/~jsw/refcst.

Top: wintertime. Bottom: summertime. Contour (shading) interval is 0.2 (0.1). From Newman et

al. (2003).
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Figure 3.  Local anomaly correlation of week-2 column-integrated tropical diabatic heating fore-

casts for the ALIM, for the winters of 1969-2000: (top) theoretical mean predictability limit ;

(bottom) actual skill from 30 years of jacknifed forecasts. Contour (shading) interval is 0.2 (0.1).
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Figure 4.  Local anomaly correlation of month-8 SST forecasts for the OLIM, for the years 1950-

2002: (top) theoretical mean predictability limit ; (bottom) actual skill from 53 years of jack-

nifed forecasts. Contour (shading) interval is 0.2 (0.1).
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Figure 7: The vertical profiles of the chi-corrected heat source, Q1, and moisture sink, Q2, during

the Intensive Observing Period (1 Nov 1992 - 28 Feb 1993) of TOGA-COARE, compared with

the NCEP reanalysis and observed data, an updated version of Johnson and Lin (1997) taken over

the Intensive Flux Array (IFA) region of COARE. The NCEP reanalysis and chi-corrected data

were taken from an analysis gridpoint near the center of the IFA region (1.4S, 155E).
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